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Linearized equations are derived for disturbances in an infinite plasma without 
an imposed magnetic field. It is shown that besides the electrostatic, or longitu- 
dinal, waves which are usually considered, there can also exist electromagnetic, 
or transverse, waves. The two sets of waves are generally coupled, but one can 
nevertheless classify the waves as either mainly longitudinal or mainly trans- 
verse. It turns out that a plasma which is stable to longitudinal waves will be 
unstable to transverse waves unless the velocity distribution of its particles 
satisfies some rather stringent conditions. In  a practical case these conditions 
would require the distribution to be isotropic. 

1. Introduction 
Plasma waves are in general not useful for the transmission of signals, but they 

are interesting because, for a wide variety of velocity distributions among the 
charged particles, they may exist with exponentially-growing amplitudes. Their 
occurrence then leads to a re-arrangement of particle velocities, presumably until 
a stable distribution is reached. Unstable waves thus tend to perform those 
functions which are fulfilled by molecular collisions in an ordinary gas. 

In the past, attention has been paid mainly to electrostatic plasma waves. The 
criterion for their stability has been given by Penrose (1960), and their tendency 
to redistribute the particle velocities has been demonstrated by Buneman (1959). 
When an electrostatic wave is unstable its amplification rate is usually of the 
order ofthe plasma frequency, generally the fastestpossiblerate for any dynamical 
process in a plasma. 

There is another form of plasma wave, in which the forces on the particles are 
electromagnetic, rather than electrostatic. This type of wave has not been so 
much discussed in the literature. However, the fact of its existence is implicit in 
some well-known equations for plasma waves, for example in equation (166) of 
chapter VI in Plusma Physics (Chandrasekhar 1960). 

Weibel (1959) was the first to show that such waves can be unstable; the 
physical mechanism of the instability was then described by Fried (1959). Later 
Harris (undated MS.) discussed some further possibilities. All these authors 
treat only cases in which the undisturbed velocity distribution of the plasma 
particles has the form C exp { - U ~ / C T ;  - (v2 + wZ)/la2,}. This restriction is not made 
in the present paper. 

The waves in question are not be confusedwith the familiar fast electromagnetic 
waves, whose phase velocities are of the order of the speed of light, and which are 
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simply a form of, say, radio waves, modified because the propagation occurs in a 
plasma rather than in a vacuum. The plasma waves to be discussed here have 
smaller phase velocities, which are usually complex and of the order of a, the 
r.m.8. velocity dispersion of the charged particles which they affect. When such 
waves are unstable, the amplification rate is of the order alc times the plasma 
frequency, where c is the speed of light. Such instabilities are thus much less 
violent than electrostatic ones; if both types occur in a plasma, the latter are 
usually the more important. But much less stringent conditions are needed for 
the existence of an electromagnetic instability than for the existence of an 
electrostatic one. In  fact, as Noerdlinger (1961) has shown, the conditions for a 
plasma to be electrostatically unstable are such as to prevent this instability 
from occurring in a number of rather interesting physical situations, for example 
in the case of a shock wave in the interplanetary medium. Here, and in many 
other cases, the transverse instabilities may become important. 

2. The equations of motion 
We shall treat only the case of an electron plasma without an imposed magnetic 

field. There is assumed to be present a smoothed-out background charge which 
takes no part in the motion, and merely serves to ensure overall space-charge 
neutrality. It is enough to allow for only one mobile species since, in a linear 
theory, a particle of charge Ze and mass mlp is equivalent to p Z 2  particles of 
charge e and mass m. 

In  the undisturbed state let there be a uniform density of N particles per unit 
volume, each of charge e and mass m,  and letfo(u, v, w) du dv dw be the proportion 
of particles whose velocities lie in the range (u, u + du; v, v + dw; w, w + dw). Let the 
density of particles in this velocity range change to N{fo  +fexp[ik(z - at)]}  in the 
perturbed state. In general we take a to be a complex phase velocity, and E to be a 
positive real wave-number. The linearized form of the collision-free Boltzmann 
equation is then 

where, for brevity, 
ik(u - a) f+  (elm) (E + c-lu A H) . 0, fo = 0, (1) 

u = (u, v, w) 

of the potentials Q, and A by the usual relations 

The potentials are given in terms of the perturbed particle distribution by 

and V ,  = (a/&,  a/&, a/aw). 
The electric and magnetic disturbance fields E and H can be expressed in terms 

E = - V $ - C - ~ A ,  H = B A A .  (2) 

v2$ - c-29 = - 4 r ~ e  exp {ik(x - at)> Jf(u) du, 

V 2 A  - C - ~ A  = - (47rNelc) exp { ik (x  - at)} suf(u) du 

The factor exp {ik( x - at)} has been omitted in (3) and (4), and will be dropped from 
now on. As usual 

or k2( 1 - a2/c2) q5 5 k2$ = 4rNeJf (u) du, 

or k2(1 -a2/c2) A = (CrNe/c) /uf(u)  du. (4) 

(3) 
and 

c - l d + V . A  = 0 

or ac-l$ = A,, ( 5 )  
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where A = (Ax,A, ,A,) .  The electric and magnetic fields can therefore be con- 
veniently expressed in terms of $ = ( 1  - aZlc2) q5, A ,  and A,. We have that 

E, = - ik(q5 - uc-lA,) = - ik( 1 - aZlc2) 4 = - ikk, 

E, = (ika/c) A,, E, = (ikalc) A,, } (6) 
H, = 0, H, = -'&A,, H, = ikA,. 

In  terms of the potentials, the linearized Boltzmann equation becomes 

m 

Three linear relations between @, A,  and A,  can be obtained from (3), (4) and (7).  
To find the first, divide (7) by u - a, andintegrate over all velocities. Then, by (3), 

111 f du dv dw = k2$/4nNe ; 

further, for any physically admissible velocity distribution, 

/ / _ m m g d u d v d w  = JLw {fo(u,O,w)-fo(u, - 0 , w ) ) d u d w  

= 0,  

and similarly for i3fo/aw. Finally, we define functions 

so that, for example, Il (a)  = //Irn L f 0 d u d v d w ,  
-m zc - a au 

and so on. Thus we find, from (7), that 

k2$ e 
47rNe m 

or (k2  - @'11) $ + ( Q'/c) (1" A ,  + Iw A,) = 0,  (9) 

where Q2 = 4nNe2/m. 
Two further relations can be found on multiplying ( 7 )  by v/(u -a)  and w/(u - a) ,  

respectively, and on integration over all velocities. In  this case we have from 
(4) that 

vf (u, v, w) du dv dw = (ck2/47rNe) ( 1  - u2/c2)  A,,\ 
110) 
\ - I  

J wf (u, v, w) dudv dw = (ck2/47rNe) ( 1  - a2/c2) A,. 
and 
There also turn up integrals of the form 

21-2 
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The first integral on the right-hand side vanishes here; the second equals unity, 
by the definition of f,. Similarly, 

k2 - Q211 (Q2/c) Iv ( Q2/c )  I w  

- ( Q2/c) Iv k2( 1 - a2/cz) + ki(IVe + 1 )  kg I V ,  

but 

= 0. (14) 

and similarly for the integral of v afo/8w. Thus, from (7) ,  

ck2 e e e 
__ ( 1 - a2/c2) A ,  - - I, $ + - ( Ivv A ,  + Ivw A,) + - A ,  = 0, 
47rNe m mC mC 

An unstable plasma wave existsiif and only if a real value of k may be found for 
which the phase velocity a has a positive imaginary part. 

3. A discussion of the dispersion relation 
The I-functions in ( 1 4 )  all have the form 

I ( a )  =Im -m L g d u ,  u - a du 

and their properties are well known from the theory of electrostatic plasma waves. 
Thus I(a)  is clearly an analytic function of a in the upper (or in the lower) half- 
plane; if g'(a,) and g"(a,) exist it  is readily shown that 

where 

lim I ( a )  = I(a,) = J(a,) + iK(a,), 
U j U R  

where aR is real and where the limit is approached from the upper half-plane. 
The symbol 9' denotes 'principal part of '. (A proof is given in appendix 1.) 

Suppose now that the zero velocity is chosen equal to the mean velocity of the 
particles, say. Let 

g ( u ) d u  = G ;  
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1 k2- @Il (Q21c) 4 (Q2/c) I, 
I - (Q2/c) I, k2 + ki( 1 + I,,) 
' - (Q2/c) I, k; I,, k2 + ki( 1 + I-) 

k; I,, 

then, if the modulus of the phase velocity 1.1 much exceeds the half-width G of 
the g-function, 

I ( a )  = B x O(l/a2); 

= 0. (20) 

in particular, then, I,, = O((r2/a2), Il = O( l/a2) and so on. On the other hand, if 
la1 has the same order of magnitude as r ~ ,  or if it  is much smaller, I ( a )  = O(G/a2), 
and so I,, = O ( l ) ,  I, = O(l/&), and so on. 

la1 in the plasmas 
ordinarily encountered. When terms of the order of a2/c2 are neglected, the 
determinant in (14) reduces to its diagonal terms only; the dispersionrelation then 

For waves with a phase velocity of order c, we have G 

becomes either 
k2 = Q2/a2, 

or A2 + 2A(I,, + I,,) + (I, I,, -I:,) = 0,  

where h = 1 + k2/k& For interesting values of the phase velocity, I,,, I,, and I,, 
are all of order unity; the corresponding values of k are then of order k, = sZ/c, 
and so are much smaller than the typical wave-number for an electrostatic wave 
with a comparable phase velocity. 

The terms I, and I,, do not, in general, vanish, and introduce a coupling between 
the electrostatic and electromagnetic modes. This affects the electrostatic modes 



k2 - @I, ( Q2/c) I, ( Q2/c) I, 

- ( Q2/c) I, 0 k2 
- (Q21c) I, k2 0 

or 

= 0; (24) 

- Q2I1 (Q2/c) 121 (Q21c) I, 
- (QZ/e) I, k2 + k:( 1 + I,,) k: I,, 

I - ( Q 2 / c ) I w  k: 4, k2+ki(1+IW) 

4. Suilicient conditions for the instability of a plasma 
We now establish that electromagnetic instabilities do occur among a rather 

wide class of velocity distributions. For the sake of simplicity we shall here 
discuss only distributions with central symmetry, that is those for which a 

= 0, (26) 
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standard of rest can be found such that the undisturbed velocity distribution 
function satisfies 

The corresponding values of Il(a), Ivv(a), &,(a) and Im(a) are then real and &(a) 
and I,(a) are pure imaginary when a is pure imaginary. To establish this, note 
that 

(29) f&, v, w) = f o (  - u, - v, - w). 

in virtue of (29); thus IVv(iq) = I:,(iq), and the required result follows. The proof 
for the other I-functions is analogous. 

Now equation (27), which is a form of the dispersion relation for transverse 
waves, may be written 

[ A  + *(Av + Y-)-J2 = *(.a,, - + 4:. (31) 

For a centrally symmetrical distribution all coefficients in this equation are real 
when a is pure imaginary, and, in particular, the right-hand side is necessarily 
non-negative. 

A sufficient condition for a transverse instability to occur is that a real positive 
wave-number k shall correspond to some phase velocity with a positive imaginary 
part. Since, by definition, h = 1 + k2/kt this means that there must exist a 
phase velocity in the upper half-plane whose corresponding h is real and larger 
than unity. By equation (31) this is so if &, + 9- is real and less than - 2 
somewhere on the imaginary axis in the upper half-plane, and therefore, by 
continuity, if 

for a = 0. Now (32) 

All cases can be excluded from this discussion in which Il is real and positive 
anywhere in the upper half-plane, since it follows from (21) that the corre- 
sponding plasma will be electrostatically unstable, and that an electrostatic 
instability will always be faster than an electromagnetic one. Therefore, in the 
cases of interest here, both Il and I: + I; will be negative on a = iq, the imaginary 
axis; it  follows from (32) that on this axis 

&v+Y,, < - 2  

& + 9,w = Iuv +I,, - (1/11) (1: + 1;). 

Jiv+4-- < Ivv++,,, (33) 

with equality only if I, = I, = 0. 
We shall now work out an expression for 

The central symmetry of fo ensures that there is no divergence near u = 0. To save 
confusion in the notation the suffix zero of the undisturbed velocity distribution 
function is dropped from here on. In terms of spherical polar co-ordinates 
( U ,  6, 'p) with the initial line 6' = 0 along the positive u-axis, we find that 

U2sin6dUd6dy. (35) 
sin2 6' 
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Put 
and 

Now expand h in terms of Legendre polynomials 
W 

the condition of central symmetry ensures that only polynomials of even order 
occur in this expansion. On defining 

one can show (see appendix 2 )  that 
W 

i = ( -  l)n-l22n+l ( n ! ) 2 / ( 2 n )  !. where n 

Now the normalization condition on the undisturbed distribution function is 

hence 

To avoid a transverse instability certainly requires that &(O) > - 2. This will be 

the case if the sum 2 inH2, on the right-hand side of (41) never becomes 

negative. 
The calculation so far has been confined to one particular direction for the 

u-axis, that is to one direction of the wave-normal n. But if the plasma is to be 
stable, I# 3 - 2  whatever the direction chosen for n. Therefore we define a 
fundamental initial line with respect to which a particular wave-vector points 
into the direction (a0,/3,). Let the velocity distribution function be written 

W 

12= 1 

m 2n 

when expressed with respect to this fundamental initial line, where the 8;;) are 
spherical harmonics. Again only harmonics of even order occur, owing to the 
requirement for central symmetry. Expressed with respect to an initial line 
which is parallel to a wave-normal n pointing into the direction ( c ~ ~ , / 3 ~ ) ,  the 
distribution function may be expressed as 

00 2n 

n=O m=O 
f ( u )  = C f iE)(u)~Gh)  cos ( m ~  + ~ m ,  n) ,  (43) 
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where the em, , are suitable constants. On equating harmonics of equal order in 
(42) and (43) one finds that 

2n 2n 

m= 0 ni=0 
Z khE’(u)%?(a,P) = f&?(WPG(p)cos(mq +em,,)* (44) 

But p = 1 when a = a. and /? = Po; further pi,(l) E P2,( 1) = 1, whilepz(1) = 0 
for all non-zero m. Therefore 

2n 

m = O  
one deduces that H2?l = c Yk~)8hE)(aO>PO)7 (47) 

and froin (41) that 
m 2n  

n=l m=O 
&(O) = - 2 + c; z1 i n Y p X p ( a o , P o ) .  (45) 

Now the average value of any spherical harmonic, of order one or larger, over a 
sphere is zero. Therefore, if the double sum in (48) must not become negative for 
any value of (ao, Po), then it must vanish for all (ao, Po). Further, none of the i, 
coefficients in (48) vanishes. Therefore it follows that all the Y&)’s vanish, for 
n 2 1. We return to (42) and see that this implies that 

independent of a and P. This integral is proportional to the number of part,icles 
in the undisturbed plasma moving into a unit solid angle around the direction 
(a,  P). Thus, in order that & ( O )  2 - 2 for all directions of the wave-vector we require 
that the number of particles in the plasma moving into any given solid angle shall be 
independent of direction. In  fact, when this is the case, Iu(0) = - 2 for all directions 
of the wave-normal, and it can easily be shown that I,, = I,, = - 1 and I , ,  = 0. 

Thus the velocity distribution in the plasma must satisfy some rather stringent 
conditions if instability is to be avoided. In  fact the requirement can be made still 
stronger, for (33) states that 

with equality only if Iu = I, = 0. Now, at best, the right-hand side equals - 2 for 
all directions of the wave-normal. Therefore I, and I, must vanish for all wave- 
normals in order that 4, + X,, shall never be smaller than - 2 and that no 
instability shall occur. Both I, and I, are pure imaginary at  u = 0, so that 

=% + &., 6 4, + I,,, 

(60) 
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expressed in polar co-ordinates. Similarly, 

Both expressions must vanish for all directions of the wave-normal. It is shown 
in appendix 2 that this means that the distribution function must also be such that 

Pm 

independent of CL and /3. 
The argument shows that no disturbance with a real, non-zero wave-number 

and zero phase velocity will exist in a plasma whose velocity distribution function 
satisfies conditions (49) and (53). We go on to prove that in such cases no distur- 
bance with a real wave-number can exist with an imaginary phase velocity a = i q  
where q is small. To establish this consider the values of &, .I;,, and 4, at  
a = iq. We have that 

4&?) = ,a,,(O) + W 4 V P ? ) O ,  (54) 
approximately, that 

(55) 

since I,(O) = 0; and if Iv, = 4, + iKvv, expressed in real and imaginary parts, then 

But 

and so 

In  terms of spherical polars, with 8 = 0 parallel to the positive u-axis, 

thus 

(57) 

It now easily follows that, if a distribution function satisfies condition (53), then 
only its isotropic part makes any contribution to the integral in (58). Hence, in 
such cases, 

(x)o aK,V = -2n2/0mfUdU < 0, and (%)o = - (u)o aK,, > 0. 

Thus both &(iq) and .I;,;,(iq) exceed - 1. Further, it is readily proved that 
,-&,(iq) = 0 now. The equation for h becomes simply 

[ A  + $(& + .1”,;,)]2 = 0. (59) 
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Since &,(iq) + 9-(iq) > - 2, the value of h corresponding to a = iq is less than 
unity, and the corresponding wave number is not real. Thus no unstable solutions 
exist near the zero phase velocity in this case. 

5. Conclusion 
It has been shown that unstable transverse waves can occur in plasmas with a 

wide variety of velocity distribution functions. When these functions have 
central symmetry an instability will certainly arise unless conditions (49) and 
(53) hold, that is unless the number of particles moving into a solid angle of given 
size and their harmonic mean velocity are independent of direction. If these condi- 
tions hold this does not mean, strictly speaking, that the velocity distribution has 
to be isotropic; to ensure isotropy would require that all integrals 

F ~ = S ~ , U % ~ ~ U  (n= 0,1,2,3, ...I 

shall have values independent of orientation. In  particular, it is not required by 
conditions (49) and (53) that there shall be pressure isotropy; a condition on the 
integral F4 would be needed to make a statement about the pressure. But in 
practice a plasma would need to be specially prepared if its velocity distribution 
were to satisfy (49) and (53) and it were yet anisotropic; this can hardly be 
expected of the distributions likely to be met with in a practical problem. 

Two important questions are not resolved by our discussion. We cannot say 
that a plasma will definitely be stable if its distribution function satisfies (49) 
and (53) since we have not considered what values of k2 correspond to phase 
velocities considerably different from zero. Further, it has not been possible to 
obtain any results for velocity distributions without central symmetry. The 
author believes, but has been unable to prove, that all such distributions are 
unstable. 

In  a paper to follow some typical unstable velocity distributions are considered 
which might arise in plausible physical situations, and the development of the 
instability is sketched. 
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Appendix 1 : General properties of the I-functions 

We define gl(u.) du /Iw u - a  
I (a )  = (A. 1.1) 

and show first that I (a )  is analytic in the upper half-plane. Since the zero velocity 
can be fixed arbitrarily, we consider only a point a = i71 on the imaginary axis. 
Now 

(A. 1.2) 

after integration by parts, since g( & 00) = 0. Further, for all physically admissible 
functions 

Ig(u)l du = Jf, say, < a, 

and so Im)l G M h 2 .  (A. 1.3) 

Thus I can have no singularities in the upper half-plane. Further, 

(A. 1.4) 

and so on, and therefore all derivatives of I are bounded in the upper half-plane. 
Thus I is an analytic function in the upper half-plane. 

Next, consider the behaviour of I as a tends to a point on the real axis, and 
again, without loss of generality, one can take this to be the point a = 0. 

Then we write I(i7) = I1+ I,, 

where 

and 

(A. 1.5) 

(A. 1.6) 

Now as 7 + 0, (A. 1.7)  

and this term is real. Iz can be evaluated if g(u) is sufficiently smooth near u = 0, 

(A. 1.8) so that 
g’(u) = g‘(0) + ug”(0)  + 0(u2), 

-+ 910 * ) d u  = J,, say, 
m u  

1/47 dx 
7 --f 7Tig’( 0 )  s -1Idq x - 3 

for then 
as 7 -+ 0, while 

(A. 1.9) 

and tends to zero as r/ + 0. Finally, 

and tends to zero with v. Hence 

I (0)  = J(O)+iK(O) = 9JY g@)du+nig’(O). 
- w  

(a. 1 . 1 1 )  
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Appendix 2 : Some series expansions for I-functions 
To evaluate 

an expression obtained in formula (37), we note that h ( a ,  p )  = 0 for all p ,  and 
we find that 

after integration by parts. Therefore 

I,(O) = 2njy U 2 d U f  (1-,u2) [----3h] 1 -,$ah dp. (A. 2.3) 
0 -1 P a,u 

m 

n-0 
On expanding WJ, E A )  = x hzn( U )  ~ z n W  

and with the definition IOm ~ 2 h 2 n ( ~ )  d~ ~ 2 n ,  

(A. 2.4) we find that &(O) = 2 n  n=O 2 Ha,/ -1 (1--p2)[?Pkn-3Pzn P dp. 

The integral equals - 4 when n = 0. We now evaluate it for other values of n. 
With the help of the well-known recurrence formula 

1 03 1 

( 1 - p ) 2 P A  = n(Pn-l-,uPn), 
1 

we find that in = /- (1 - ,u2) [ kl!? P;, - 3p, I  d p  
P 

(A. 2.5) 

Next /:lpP2n-ld,u = when n = 1, 

= O  when n >  1, 

and / : l & n ( l - p z ) d p = -  : pZn(l-P2)d,u=-& when n =  1, 

= 0 when n >  1. 

Finally to evaluate 

we use the recurrence formula 

(n + 1)  - (2n + 1 )  pPn + nPn-l = 0, 

so that (2% - 1)  P2n-l/p = (4% - 3) P2n-z - (2% - 2 )  P2n-31~ 

For n = 1, (A. 2.7) 
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and therefore for larger values of n 

( 2 n  - 2) .  . .2 
( 2 n -  1) ... 3 

d p  = ( -  1y-1 . . 2  

On collecting terms we find that 

i, = - 2 . 3 + 5 . & + 4  = 4, 
and for n 2 2 

in = ( -  1),-1 2Znn[(n - 1) !]z = ( - ip-1 22n+1(n !)2 
( 2 n -  l)! (an)!  ' 

Thus 

Next consider the integrals I,(O) and IJO). In  polar co-ordinates, 

Once again let 

The integration picks out the component with 

f = 2 Y ~ ~ z ) ( u ) P z ( P )  cos (my +ern, ,). 
n=O n&=O 

= 1, and 

similarly 

As before, we compare the two series expressions 

(A. 2.8)  

(A. 2.9) 

(A. 2.10) 

(A. 2.11) 

(A. 2.12) 

(A. 2.13) 

(A. 2.14) 

(A. 2.16) 

Now consider a particular wave-normal n, through a = a, and p = Po, and let the 
azimuthal angle rp be measured from the plane which contains n and the funda- 
mental initial line. Then, near a = a,, p = Po, 

a a  - %=as' 
i a  a 

&G&3==%, 

taken along 'p = 0, 

- taken along cp = 7712. 
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From now on we use cos 0 as the argument of the Legendre functions. Equating 
harmonics of equal order in (A. 2.15), 

2n 

?n=O 
I: f g q  U)p&(cos 0) COB mcp COB €m* 

2n 2n 

m=O m=O 
- 2 f~~) (U)p~(cos8 ) s inmcps ine , , n  = C @i;)(U)Sg(a,/3). (A.2.16) 

Hence, near a = a0, /3 = Po, 

and 

since derivatives of the Legendre functions p?& vanish a t  0 = 0 when m =/= 1. 
Thus IJO) and I,(O) are expressible, respectively, as infinite series, in terms of 

Z&;)(a8g$kx)aa, Po and si;)(aS?&/a/3),o, where EiE) = U$i$ d U .  In fact, 

and 

Thus, if I, and I, are required to vanish for all values of a and p, then G is the 
sum of an infinite series, in spherical harmonics, whose first derivatives vanish 
everywhere on the sphere. Hence all the Eig) vanish and so 

is independent of a and /3 in this case, as earlier stated. 


